Мышечное сокращение

ОБЩАЯ БИОЛОГИЯ

А.Н. ТИХОНОВ

Мышечное сокращение

Молекулярные основы биологической подвижности

Среди механохимических преобразователей энергии, распространенных в живой природе, исключительно важную роль играют линейные молекулярные моторы – белковые машины, которые движутся вдоль полимерных нитей, используя в качестве «топлива» молекулы АТФ(аденозинтрифосфата). К таким моторам относятся белки актомиозинового комплекса, входящего в состав сократительного аппарата мышц. Движение микроворсинок (жгутиков и ресничек) определяется взаимодействием другой пары моторных белков – динеина и тубулина. Кинезин и другие родственные ему белки (некоторые формы миозина) работают в клетке как переносчики органелл (митохондрий, лизосом) и сравнительно крупных частиц. В данной статье мы рассмотрим работу линейных молекулярных моторов на примере двух механохимических белков – миозина и кинезина. Среди большого числа моторных белков миозин скелетных мышц и кинезин из клеток мозга являются наиболее изученными. Несмотря на то, что функции миозина и кинезина в клетке различаются, они удивительно похожи по своему строению и механизмам действия.

Модель скользящих нитей

Скелетные мышцы состоят из многоядерных клеток, связанных возбудимой плазматической мембраной, по которой приходит нервный импульс, инициирующий сокращение мышцы. Мышечные клетки состоят из множества сократительных волокон – миофибрилл, расположенных параллельно друг другу. Структурно-функциональными единицами миофибрилл являются саркомеры, которые располагаются вдоль мышечных волокон через каждые 2,3 мкм. На электронно-микроскопических снимках продольного среза мышечной ткани видно, что саркомер состоит из параллельных рядов толстых и тонких нитей (рис. 1, а). Вертикальные темные линии Z соответствуют специальным структурным белкам, разделяющим миофибриллы на саркомеры. Между ними видны горизонтальные нити сократительного аппарата. От Z-линий отходят тонкие нити, которым на электронно-микроскопических снимках соответствуют светлые полосы I. В центральной части саркомера расположены толстые нити, которым соответствуют темные полосы А. В середине каждой полосы А видна более светлая полоса Н. Наличие двух темных участков полосы А определяется тем, что в этих зонах толстые нити пересекаются тонкими нитями. Более светлая полоса (зона Н) соответствует участку саркомера, где толстые нити не пересекаются с тонкими нитями.

Рис. 1

Рис. 1. Схематическое изображение строения саркомеров мышечного волокна: а – продольный разрез, б – поперечный разрез в области пересечения толстых и тонких нитей, в – изменение длины саркомера в результате движения толстых и тонких нитей

Толстые нити, имеющие диаметр 15 нм, состоят главным образом из молекул миозина. Тонкие нити имеют диаметр 9 нм. Они содержат белки трех типов: актин, тропомиозин и тропониновый комплекс. Если посмотреть на поперечный срез саркомера в области, где соседствуют толстые и тонкие нити (темный участок полосы А), то можно увидеть, что каждая тонкая нить окружена тремя толстыми нитями, а каждая толстая нить окружена шестью тонкими нитями (рис. 1, б). Толстые и тонкие нити взаимодействуют друг с другом с помощью поперечных мостиков длиной около 13 нм, которые через регулярные промежутки выходят из толстых нитей и заполняют щели между соседними толстыми и тонкими нитями. При сокращении мышцы ее длина укорачивается на одну треть. Как это происходит стало понятно в начале 1950-х гг., когда Эндрю и Хью Хаксли, Р.Нидергерк и Ж.Хэнсон, исследовавшие мышечные волокна методами рентгеноструктурного анализа, оптической и электронной микроскопии, независимо пришли к модели скользящих нитей. В основе этой модели лежат следующие факты:

– при сокращении мышцы длины толстых и тонких нитей саркомера не изменяются;
– саркомер укорачивается за счет перекрывания толстых и тонких нитей, которые скользят друг относительно друга во время сокращения мышцы; это проявляется в том, что при сокращении мышцы полосы Н и I укорачиваются (рис. 1, в);
– сила, развиваемая мышцей, создается в процессе движения соседних нитей.

Скольжение толстых и тонких нитей друг относительно друга совершается за счет энергии, выделяемой при гидролизе АТФ (ATP) до AДФ (ADP) (аденозиндифосфата) и неорганического фосфата (Фн). АТФазную активность миозина открыли в 1939 г. супруги В.А. Энгельгардт и М.Н. Любима, которые показали, что препараты миозина способны расщеплять АТФ на AДФ и Фн (АТФ + Н2О = AДФ+ Фн). Ими было также показано, что добавление АТР к белковому препарату, состоящему из нитей миозина, влияет на его механические свойства. Вскоре после этого А.Сцент-Дьорди (удостоенный впоследствии Нобелевской премии) установил, что в растворе актин и миозин образуют так называемый актомиозиновый комплекс. Примечательно, что сам по себе миозин плохо расщепляет АТФ, но в присутствии актина его активность возрастает приблизительно в 200 раз.

Строение толстых и тонких нитей мышечного волокна

Элементарной структурной единицей толстых нитей саркомера является молекула миозина. Миозин скелетных мышц (миозин класса II) является довольно крупным белком, состоящим из шести полипептидных цепей. Эта молекула представляет собой димер, образованный из двух сплетенных друг с другом одинаковых мономеров миозина (рис. 2, а). Каждый из этих мономеров состоит из одной тяжелой цепи (молекулярная масса 230 кДа) и двух легких цепей (молекулярная масса 20 кДа). Тяжелая цепь миозина неоднородна по своему строению. На одном конце ее полипептидная цепь свернута в виде глобулы, образующей своеобразную головку миозина (фрагмент S1). С помощью более тонкой шейки (фрагмент S2) головка миозина соединяется с длинным хвостом, который образован протяженной полипептидной цепью, уложенной в виде вытянутой (a-спирали. Хвосты двух мономерных единиц миозина сплетены друг с другом и образуют вытянутый стержень длиной 170 нм и толщиной 2 нм. Две подвижные головки, выступающие вбок из этого стержня (рис. 2, а), выполняют моторные функции – в ходе работы сократительного аппарата наклон головок миозина относительно его хвоста изменяется, обеспечивая перемещение миозина относительно актина.

Рис. 2

Рис. 2. Строение молекулы миозина (а) и тонкой нити (б). В расслабленной мышце тропомиозин препятствует взаимодействию головки миозина с актином. Внизу (в) схематически показано различие геометрических характеристик моторных участков молекул миозина трех разных типов

Моторный фрагмент миозина (S1) непосредственно взаимодействует с тонкой актиновой нитью. Фрагмент S1 включает в себя каталитический центр, с которым связывается молекула АТФ и где происходит ее гидролиз до AДФ и Фн. При гидролизе АТФ выделяется энергия, за счет которой работает миозин. В 1993 г. Айвэн Рэймент и его коллеги методом рентгеноструктурного анализа установили пространственное строение головки миозина. Согласно их данным, фрагмент S1 представляет собой глобулу размером 16,5х6,5х4 нм. На картине трехмерного строения S1, полученной с разрешением 2,8, четко видны оба функционально важных участка: место посадки АТФ и выступающий наружу участок полипептидной цепи, который непосредственно взаимодействует с актином. Вращательная подвижность головки миозина обеспечивается за счет своеобразных шарниров – гибких участков полипептидной цепи. Один из них находится в месте соединения фрагментов S1 и S2, другой расположен между фрагментом S2 и хвостом миозина (рис. 2, а). Наличие молекулярных шарниров дает возможность фрагменту S1 присоединяться и отсоединяться от нити актина, а также изменять свою ориентацию в ходе сократительного цикла (рис. 3, 4). Функционально важным звеном молекулы миозина является ее регуляторный участок, расположенный в области шейки, соединяющей каталитическую головку с хвостом молекулы миозина. Шейка образована a-спиралью полипептидной цепи длиной 8–9 нм, которая окружена двумя легкими полипептидными цепями S2. Шейка, по сути дела, является рычагом, через который структурные изменения в каталитическом центре передаются хвостовой части молекулы миозина. Легкие цепи придают этому рычагу необходимую жесткость и выполняют важную роль в регуляции каталитической активности миозина. Молекулы миозина в мышцах работают не поодиночке, а образуют сравнительно толстые жгуты из сплетенных друг с другом димеров. В саркомерах поперечнополосатых мышц каждая толстая нить состоит приблизительно из 300 сплетенных димеров миозина. С обоих концов толстой нити выступают многочисленные подвижные мостики, которые могут связываться с окружающими их тонкими нитями актина (рис. 1, б).

Рис. 3

Рис. 3. Схема, показывающая изменение положения головки миозина (S1) относительно тонкой нити в ходе структурных перестроек актомиозинового комплекса, которые приводят к возникновению силы, тянущей хвост миозина

Рис. 4

Рис. 4. Цикл структурных превращений актомиозинового комплекса, приводящих к смещению молекулы миозина вдоль нити актина

Тонкие нити мышечных волокон состоят из нескольких белков (рис. 2, б). Основной составляющей тонких нитей является актин, присутствующий в них в форме вытянутых полимерных нитей. Эти нити образованы из мономеров глобулярного белка (G-актин), имеющего молекулярную массу 42 кДа. В растворе мономеры G-актина могут связываться друг с другом, образуя молекулы F-актина – вытянутые линейные полимеры G-актина, или микрофиламенты, имеющие диаметр 6–7 нм. Тонкие нити сократительного аппарата мышц, с которыми взаимодействуют миозиновые мостики, наряду с актином содержат также другие белки: тропомиозин и три белка тропонинового комплекса (рис. 2, б), которые играют очень важную роль в регуляции взаимодействия миозина с актином. По своей массе они составляют приблизительно треть от всей массы тонких нитей. Молекула тропомиозина состоит из двух a-спиралей длиной около 38 нм, вложенных в гораздо более протяженную нить F-актина. Тропониновый комплекс состоит из трех белков (TnC, TnI и ТnT). Белок TnI непосредственно связан с актином, а белок ТnT– с тропомиозином. Белок ТnC принадлежит к классу регуляторных белков, называемых кальмодулинами. Этот белок активируется при его взаимодействии с ионами Са2+. Тропониновые комплексы расположены вдоль тонкой нити через регулярные интервалы в 38,5 нм, соответствующие длине молекулы тропомиозина.

Продолжение следует

 

Рейтинг@Mail.ru
Рейтинг@Mail.ru