НОВОСТИ НАУКИ

О.А. ШАРГОРОДСКАЯ

Трансформация эукариотических клеток с использованием синтетических полимерных катионов

Доставка чужеродных нуклеиновых кислот внутрь интактных клеток, или трансформация, лежит в основе многих методов генной инженерии. Транспортировка функциональных генов в ткани может сделать возможной коррекцию генной недостаточности и мутаций, следствием которых являются тяжелые наследственные патологии или раковые опухоли. В настоящее время разработан целый ряд приемов для введения ДНК в клетки, среди которых наиболее распространены преципитация фосфатом кальция или диэтиламиноэтил-декстраном (ДЕАЕ-декстраном), электропорация, микроинъекция, встраивание ДНК в реконструированную оболочку вирусов или липосомы (искусственные мембранные липидные везикулы).

Несмотря на разнообразие этих методов, поиск новых путей трансформации про- и эукариотических клеток продолжается. С одной стороны, это вызвано необходимостью повышения эффективности трансформации, с другой – перечисленные выше методы применимы лишь для ограниченного числа клеточных линий и неэффективны при попытках введения в клетки РНК. Наконец, большинство этих подходов не может быть использовано для генетической трансформации in vivo.

В качестве переносчиков ДНК используются ретровирусные векторы, векторы на основе ДНК-содержащих вирусов и ВИЧ, липосомы на основе катионных липидов, полимерные ДНК-связывающие катионы. Использование синтетических полимеров в качестве переносчиков ДНК имеет ряд преимуществ: удобство хранения и очистки, простота тестирования токсичности и безопасности и, что особенно важно для генной терапии, снижение риска патогенетических и иммунологических осложнений.

При смешивании растворов линейных поликатионов и ДНК формируются интерполиэлектролитные комплексы (ИПЭК) за счет образования кооперативной системы межцепных электростатических связей. При этом поликатионные цепи окружают молекулу ДНК, образуя сферы или тороиды, в зависимости от типа полимера. Включение в ИПЭК приводит к компактизации ДНК, повышению ее устойчивости к действию нуклеаз, способствует усилению ее взаимодействия с клеточной мембраной и повышению трансформирующей активности по отношению как к прокариотическим, так и эукариотическим клеткам. Соединяя молекулы поликатиона с лигандами, способными к специфическому связыванию с клеточной мембраной, можно обеспечить проникновение ИПЭК в клетку по рецепторному пути, а в организме – адресную доставку к клеткам-мишеням.

Системы доставки ДНК для применения в генной терапии должны обеспечивать проникновение ДНК в нужный орган, ткань, или в конкретную группу клеток, а затем – в клеточное ядро. Антисмысловые олигонуклеотиды, а именно они чаще всего используются в генной терапии, должны найти ту мРНК или участок хромосомной ДНК, против которой они направлены. Введенный ген должен войти в состав конструкции, способной его экспрессировать.

Однако это довольно сложная проблема. При введении нуклеиновой кислоты или олигонуклеотида в организм они не попадут преимущественно к нужной ткани или нужному органу, а та их часть, которая окажется в нужном месте, лишь в незначительной мере сможет пройти сквозь гидрофобную клеточную мембрану. Кроме того, в ходе эволюции были выработаны механизмы защиты клеток организма от вторжения факторов внешней среды, в том числе и чужеродной ДНК. Оказавшись внутри клетки, чужеродная ДНК может локализоваться не там, где это необходимо и, более того, может оказаться в лизосомах, где будет разрушена под действием нуклеаз.

Проникновение в клетку и внутриклеточный транспорт ИПЭК происходит, возможно, за счет образования и последовательного разрушения эндосом. На каждом из этапов этого процесса существенная часть материала теряется. Скудное высвобождение векторов из эндосом в цитоплазму и неэффективный перенос их в ядро приводят к низкой эффективности трансгенной экспрессии.

Рестрикционная карта плазмиды pBR 322

Рестрикционная карта плазмиды pBR 322:
цифрами указана нумерация нуклеотидов;
тонкие черточки – единичные сайты, узнаваемые рестриктазами;
толстые серые стрелки сверху – направление транскрипции;
Pbla – промотор гена Ampr – устойчивость к ампициллину;
Ptet– промотор гена Tetr– устойчивость к тетрациклину;
TТ1 – Rho-независимый терминатор транскрипции (положение 3140–3160); ТТ2 – положение 3080–3110; ROP – белок, способствующий образованию дуплексов между РНК 1 и РНК 2 (негативный регулятор копийности); РНК 1 – контрольная РНК (контролирует копийность плазмиды); РНК 2 – «праймерная» РНК (служит затравкой для репликации);
толстые черные стрелки – направление транскрипции РНК 1 и РНК 2

Векторы на основе фага М13

Векторы на основе фага М13

Можно выделить три пути повышения эффективности переноса ДНК в эукариотические клетки с помощью синтетических поликатионов. Во-первых, это повышение специфичности трансфекции* за счет лигандов, соединенных с молекулой поликатиона и обеспечивающих избирательное взаимодействие комплексов с клетками определенного фенотипа. Во-вторых – повышение эффективности трансформации за счет подбора генов или олигонуклеотидов, внедряемых в клетку. В-третьих – повышение частоты трансфекции, которое достигается за счет применения лигандов, более эффективно взаимодействующих с клеточной мембраной, и веществ, дестабилизирующих мембрану. Кроме того, возможен синтез новых поликатионов.

В лаборатории молекулярной вирусологии и генной инженерии НИИ гриппа РАМН в Санкт-Петербурге проводится изучение средств доставки ДНК и вирусных частиц в клетки. В этой работе используется набор полимерных носителей, синтезированный сотрудниками Института высокомолекулярных соединений РАН. В качестве экспрессионных векторов использовались плазмиды: pUC 18, содержащая цитомегаловирусный промотор и ген b-галактозидазы, и pBR 322, содержащая цитомегаловирусный промотор и ген зеленого флуоресцирующего белка водорослей.

В результате проведенных исследований было выяснено, что наибольшую трансфекционную активность имеют ИПЭК поли-(2-(диметиламино)этил)метакрилата (PDMAEMA) с низкими молекулярными массами. Дальнейшие исследования позволят разработать новые подходы к решению актуальных проблем в вирусологии, молекулярной и клеточной биологии, генной инженерии, генной терапии.


* Трансфекция – передача всего набора генов вируса или фага, приводящая к развитию вирусных частиц в клетке.

 

Рейтинг@Mail.ru
Рейтинг@Mail.ru