Уроки биологии в классах естественно-научного профиля

ПЛАНИРОВАНИЕ

О.В. ПЕТУНИН

Петунин Олег Викторович – доцент кафедры естественно-научных дисциплин Кузбасского регионального института повышения квалификации и переподготовки работников образования, учитель биологии средней школы с углубленным изучением отдельных предметов № 32 г. Прокопьевска Кемеровской области, отличник народного просвещения, четырехкратный обладатель гранта Сороса (1997–2000 гг.), победитель конкурса «Учитель года Кемеровской области – 1996», финалист конкурса «Учитель года России – 1996», лауреат премии Президента РФ, кандидат педагогических наук.

Рецензенты работы:

Сущев Дмитрий Владимирович – старший преподаватель кафедры зоологии Кемеровского государственного университета, кандидат биологических наук.

Титоров Юрий Иванович – директор Кемеровского городского классического лицея, победитель конкурса «Учитель Кузбасса – 1994», лауреат премии Президента РФ.

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

Предисловие

Предлагаемое расширенное планирование по биологии (10-й класс) выполнено из расчета 136 ч (4 ч в неделю) учебного времени, выделяемого на изучение данного предмета в год, и включает 6 разделов, которые содержат планы 124 уроков.

Пособие является результатом многолетней практики преподавания автором биологии в классах с углубленным изучением биологических дисциплин, но оно может быть использовано учителями при подготовке уроков не только в профильных, но и в общеобразовательных классах.

Приводимое планирование предполагает изучение общебиологических закономерностей по уровням организации живой природы. Каждый урок содержит разнообразные материалы, которые учитель может использовать по своему усмотрению, исходя из подготовки класса, имеющегося времени и других факторов. В то же время следует подчеркнуть, что автор не претендует на исчерпывающее освещение тем, рассматриваемых в пособии. Данное пособие не заменяет учебник биологии и содержит лишь тезисы лекций, карточки, задания для текущей и итоговой проверки знаний десятиклассников. Автор старался не перегружать пособие излишним количеством вопросов, обращенных по ходу лекций к учащимся, и рисунками, которые есть в учебниках. В то же время к каждой проверочной работе дается подробная инструкция, а ответы на письменные задания содержатся в текстах соответствующих урочных планов.

РАДЕЛ 1. ВВЕДЕНИЕ ВОБЩУЮ БИОЛОГИЮ (2 ч)

Задачи: показать многообразие живых организмов на Земле и познакомить с науками, изучающими это многообразие; дать определение понятиям «биология», «общая биология»; раскрыть сущность жизни и отличия живого от неживого; выделить уровни организации живого, показав их тесную взаимосвязь.

Урок 1. Предмет и задачи общей биологии

Оборудование: портреты ученых, внесших большой вклад в развитие биологии.

I. Изучение нового материала

1. Многообразие органического мира и комплекс биологических наук

Наука о живой природе называется биологией (от греч. биос – жизнь и логос – учение). Сам термин «биология» был введен в научный обиход французским естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 г.

Раскрытие общих свойств живых организмов и объяснение причин их многообразия, выявление связей между их строением и условиями окружающей среды относятся к основным задачам биологии. Важное место в этой науке занимают вопросы возникновения жизни на Земле и законы ее развития.

Для живой природы характерно необычайное разнообразие форм. В настоящее время обнаружено и описано примерно 500 тыс. видов растений, более 1,5 млн видов животных, сотни тысяч видов грибов, более 3 тыс. видов разнообразных бактерий и 1 тыс. вирусов. Число еще не описанных видов оценивается в 1–2 млн. Все это многообразие организмов изучается комплексом биологических дисциплин.

Современную биологию, изучающую живую природу как особую форму движения материи, можно разделить на отдельные дисциплины. Подходы к этому делению могут быть разнообразными. Рассмотрим лишь некоторые из них.

По объектам исследования

Вирусология, занимающаяся изучением вирусов; микробиология, изучающая царство бактерий и микроскопические грибы; ботаника, исследующая строение и жизнедеятельность представителей царства растений; зоология, предметом изучения которой являются животные; микология, занимающаяся изучением грибов; и др.

В соответствии с уровнем организации

Молекулярная биология; цитология – учение о клетке; гистология – учение о тканях; и др.

Агробиология, биология охраны природы, инженерная биология и др.

2. Предмет и задачи общей биологии

Из сказанного выше можно сделать вывод, что биологические науки, изучающие жизнь во всех ее проявлениях, весьма разнообразны. Среди них выделяются науки, изучающие общие свойства живых организмов: закономерности наследования признаков (генетика), пути превращения органических молекул (биохимия), взаимоотношения организмов со средой обитания (экология) и др.

Основы этих наук составляют курс общей биологии, который будет изучаться нами на протяжении 10–11-х классов. Общая биология, таким образом, изучает общие закономерности, присущие всему живому.

3. Методы биологических исследований

Живые биологические системы очень сложны, поэтому формы, методы и способы их исследования довольно разнообразны. Метод (греч. методос – путь к чему-либо) – это способ достижения цели. Опишем основные методы биологических исследований.

1. Метод наблюдения является наиболее традиционным и наиболее «древним», но не потерял своего значения до сих пор. Он предполагает целенаправленное изучение объекта или явления в естественных или искусственно созданных условиях. При этом не ставится задача выявления действия отдельного фактора, а исследователь является простым наблюдателем.

2. Эксперимент – более активная форма изучения объекта или явления. В искусственно созданных условиях изучается ответ определенного объекта на изменение какого-либо одного или нескольких внешних факторов.

3. Сравнительный метод получил широкое распространение еще в XVIII в. Он заключается в сопоставлении организмов и их частей. Именно принципы сравнения в свое время легли в основу систематики, клеточной теории. Применение сравнительного метода в анатомии, палеонтологии, эмбриологии и других науках способствовало утверждению эволюционных представлений в биологии.

4. Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций в ходе геологической истории Земли.

5. Метод моделирования предполагает изучение какого-либо процесса или явления через воспроизведение его самого или его существенных свойств в виде модели. Образную модель можно представить в виде знаковой, т.е. математической, модели. В последнем случае эксперимент сводится к определенным математическим расчетам, как правило, с использованием компьютера. Моделирование дает возможность прогнозировать последствия природных и техногенных катастроф, направления смены экологических систем, объемы выращиваемой сельскохозяйственной продукции и др.

4. Значение биологии

Познание законов функционирования живых организмов позволяет не только составить точную картину мира, но и использовать их для практических целей. Назовем основные области практического применения биологических знаний:

  • в сельском хозяйстве – выведение новых пород домашних животных и сортов культурных растений, создание биологических методов борьбы с вредителями сельскохозяйственных культур и др.;

  • в фармакологии – использование различных биологических объектов и веществ, ими синтезируемых, в качестве лекарственных препаратов и др.;

  • в пищевой промышленности – выращивание используемых в пищу организмов из одной клетки, создание различных биодобавок и др.;

  • в медицине, психологии и социологии – биология является научной теоретической базой;

  • в деле охраны природы – все связи человечества с окружающей средой должны строиться на основе знания законов функционирования экологических систем и биосферы в целом.

Мы перечислили далеко не все возможные области применения биологических знаний на практике. Очевидно, что в дальнейшем практическое значение биологии еще больше возрастет.

II. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала

III. Домашнее задание

1. Изучить соответствующие параграфы учебника (предмет и задачи общей биологии, методы биологических исследований, практическое значение биологии).

2. Устно дать определение следующим биологическим наукам: ботаника, зоология, микробиология, микология, вирусология, альгология, энтомология, орнитология, териология, морфология, анатомия, физиология, палеонтология, эмбриология, биогеография, генетика, селекция, биохимия, экология, систематика, гистология, цитология, эволюционное учение.

Урок 2. Биологические системы и их свойства. Уровни организации живой природы

Оборудование: таблицы по биологии, иллюстрирующие различные уровни организации живой природы.

I. Проверка знаний

Работа по карточкам

Карточка 1. Ботаника – растения; зоология – животные; анатомия – строение организма; физиология – функции организма; бактериология – бактерии; вирусология – вирусы; молекулярная биология – клеточные функции; биохимия – химия организмов.

Приведенный перечень биологических дисциплин расположен в определенном порядке. Чем вы могли бы объяснить такую последовательность?

Карточка 2. Предложите план эксперимента, выясняющего значимость ядра для существования клетки, исходя из следующих вводных данных: в течение 25 дней вы можете наблюдать 150 клеток, лишенных ядра, и 150 клеток с ядром.

Карточка 3. Закончите фразу: «Благодаря знанию основ биологии я могу...».

Карточка 4. Проверьте себя: сможете ли вы найти в гербарии среди травянистых растений лекарственные – подорожник большой, мать-и-мачеху, ромашку аптечную?

Карточка 5. Как вы понимаете выражения: «прикладная биология», «использование биологических знаний на практике»?

Карточка 6. В настоящее время промышленным путем можно получить значительное количество биологически активных веществ. Приведите конкретные примеры.

Устная проверка знаний по вопросам

1. Многообразие органического мира и комплекс биологических наук.

2. Предмет и задачи общей биологии.

3. Методы биологических исследований и их характеристика.

4. Практическое значение биологии.

Терминологический диктант

(Учитель по вариантам диктует термины, а учащиеся дают им в тетрадях определение.)

Вариант 1

Биология; эмбриология; микология; энтомология; физиология; систематика; гистология; зоология; териология; морфология; селекция; эволюционное учение.

Вариант 2

Цитология; ботаника; биохимия; орнитология; микробиология; экология; вирусология; альгология; биогеография; анатомия; палеонтология; генетика.

II. Изучение нового материала

1. Понятие биологической системы

Мир живых существ, включая человека, представлен биологическими (живыми) системами различной структурной организации и разного уровня соподчинения, или согласованности. Остановимся на понятии «биологическая система», признаках биологических систем и их уровнях.

Биологические системы – это объекты различной сложности, имеющие несколько уровней структурно-функциональной организации и представляющие собой совокупность взаимосвязанных и взаимодействующих элементов.

Примерами биологических систем являются: клетка, ткани, органы, организмы, популяции, виды, биоценозы, экосистемы разных рангов и биосфера.

Элементарной биологической системой, т.е. системой самого низшего ранга, является клетка, т.к. нет систем еще более низкого ранга, которые бы обладали всей совокупностью признаков, присущих биологическим системам.

Рассмотрим признаки биологических систем, т.е. те критерии, по которым живое отличается от объектов неживой природы.

2. Критерии биологических систем

Каковы признаки, отличающие биологические системы от объектов неживой природы, и основные характеристики процессов жизнедеятельности, выделяющие живое вещество в особую форму существования материи?

1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. В неживой природе самыми распространенными элементами являются кремний, железо, магний, алюминий, кислород. В живых же организмах 98% элементарного (атомного) состава приходится на долю всего четырех элементов: углерода, кислорода, азота и водорода.

2. Обмен веществ. К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: например, смыв почвы, превращение воды в пар или лед и др. У живых же организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ.
Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.

3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных. Процесс самовоспроизведения осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.

4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Наследственность обеспечивается стабильностью ДНК и воспроизведением ее химического строения с высокой точностью. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются хромосомы и гены.

5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней. Изменчивость поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие. Способность к развитию – всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, изменяется его состав или структура. Развитие живой формы материи представлено индивидуальным развитием (онтогенезом) и историческим развитием (филогенезом). Филогенез всего органического мира называют эволюцией.
На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие часто сопровождается ростом – увеличением линейных размеров и массы всей особи и ее отдельных органов за счет увеличения размеров и количества клеток.
Историческое развитие сопровождается образование новых видов и прогрессивным усложнением жизни. В результате эволюции возникло все многообразие живых организмов на Земле.

7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить.
Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой, называются рефлексами. Организмы, не имеющие нервной системы, лишены рефлексов, и их реакции выражаются в изменении характера движения (таксисы) или роста (тропизмы).

8. Дискретность (от лат. discretus – разделенный). Любая биологическая система состоит из отдельных изолированных, то есть обособленных или отграниченных в пространстве, но тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.
Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.

9. Саморегуляция (авторегуляция) – способность живых организмов поддерживать постоянство своего химического состава и интенсивность физиологических процессов (гомеостаз). Саморегуляция осуществляется благодаря деятельности нервной, эндокринной и некоторых других регуляторных систем. Сигналом для включения той или иной регуляторной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы.

10. Ритмичность – свойство, присущее как живой, так и неживой природе. Оно обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.
Ритмичность проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие. Ритмичность направлена на согласование функций организма с периодически меняющимися условиями жизни.

11. Энергозависимость. Биологические системы являются «открытыми» для поступления энергии. Под «открытыми» понимают динамические, т.е. не находящиеся в состоянии покоя системы, устойчивые лишь при условии непрерывного доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи . В большинстве случаев организмы используют энергию Солнца: одни непосредственно – это фотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).
Таким образом, биологические системы резко отличаются от объектов неживой природы своей исключительной сложностью и высокой структурной и функциональной упорядоченностью. Эти отличия придают жизни качественно новые свойства. Живое представляет собой особую ступень развития материи. Характеризуя жизнь как явление, следует учитывать ее разнообразие и многокачественность, поскольку она представлена на нашей планете биологическими системами различной сложности.

3. Уровни организации живой природы

Биологические системы различаются по степени сложности своей организации. Друг относительно друга биосистемы выстраиваются по уровням сложности и при этом включены одна в другую, по принципу «матрешки». В то же время биосистема любого уровня достаточно обособлена и целостна.

Биосистемы разной степени сложности – представляют собой структурные уровни организации жизни, среди которых выделяют следующие: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный. Дадим их краткую характеристику.

Уровни организации живой природы

1. Молекулярный. Любая система состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов. С этого уровня начинаются процессы жизнедеятельности организма: обмен веществ, передача наследственной информации и др. На молекулярном уровне проходит граница между живой и неживой природой.

2. Клеточный. Клетка является структурной и функциональной единицей, а также единицей развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, так как они могут проявлять свойства живых систем только в клетках живых организмов.

3. Тканевый. Ткань представляет собой совокупность сходных по происхождению и строению клеток и межклеточного вещества, объединенных выполнением общей функции.

4. Органный. Органы – это структурно-функциональные объединения нескольких типов тканей. Органы объединяются в системы органов.

5. Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, приспособленных для выполнения различных функций.

6. Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются элементарные эволюционные преобразования. Совокупность популяций образует вид, который объединяет особей, обладающих наследственным сходством строения, жизнедеятельности и др. признаков, свободно скрещивающихся между собой и дающих плодовитое потомство.

7. Биогеоценотический. Биогеоценоз – совокупность организмов разных видов со всеми факторами конкретной среды их обитания – компонентами атмосферы, гидросферы и литосферы. Биогеозеноз включает: неорганические и органические вещества, автотрофные и гетеротрофные организмы. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные устойчивые сообщества.

8. Биосферный. Биосфера – система высшего порядка, охватывающая все явления жизни на нашей планете. На этом уровне происходят круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Законы, характерные для более высокого уровня организации живого мира, не исключают действия законов, присущих более низким уровням.

III. Закрепление знаний

1. Ообщающая беседа по ходу изучения нового материала.

2. Заполнение таблицы «Уровни организации живой природы».

Таблица 1. Уровни организации живой природы

Уровни организации

Биологическая система

Компоненты,
образующие систему

Основные процессы

1. Клеточный

Клетка

Комплексы молекул химических соединений и органоиды клетки

Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы

2. Тканевый

Ткань

Клетки и межклеточное вещество

Обмен веществ; раздражимость

3. Органный

Орган

Ткани разных типов

Пищеварение; газообмен; транспорт веществ; движение и др.

4. Организменный

Организм

Системы органов

Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания

5. Популяционно-видовой

Популяция

Группы родственных особей, объединенных определенным генофондом и специфическим взаимодействием с окружающей средой

Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды

6. Биогеоценотический

Биогеоценоз

Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания

Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами

7. Биосферный

Биосфера

Биогеоценозы и антропогенное воздействие

Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы

IV. Домашнее задание

Изучить параграф учебника (биологические системы и их признаки, уровни организации жизни на Земле).

РАЗДЕЛ 2. ХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ ЖИЗНИ (22 ч)

Задачи: познакомить учащихся с химическим составом клеток и организмов; изучить роль основных неорганических и органических веществ организма в его жизнедеятельности; раскрыть связь строения, свойств и функций веществ в клетке и организме

Урок 1. Элементарный и молекулярный состав живого вещества

Оборудование: таблицы по биологии.

I. Проверка знаний

Работа по карточкам

Карточка 1. Какую из черт, характерную для живой природы, можно найти у какого-нибудь неживого объекта? Можете ли вы привести соответствующие примеры?

Карточка 2. Как вы считаете, в чем заключается и чем обусловлена необходимость выделения различных уровней организации живой материи?

Карточка 3. Дано утверждение: «Моделирование жизни нельзя представлять, как конструирование человеком из искусственных полимеров и других органических соединений различных органоидов и объединение их в клетку». Выразите ваше отношение к этому утверждению, подкрепив его знанием критериев живого.

Устная проверка знаний по вопросам

1. Биологические системы и их примеры.

2. Признаки биологических систем и их характеристика.

3. Уровни организации живой природы.

II. Изучение нового материала

1. Сравнение элементарного состава живой и неживой природы

Без знания химического состава клетки – основной единицы жизни – нельзя понять механизмы сложнейших процессов, которые протекают в живых организмах всех царств природы. Поэтому изучение общебиологических закономерностей мы начинаем с изучения химической организации жизни. Вначале сравним элементарный, т.е. атомарный, состав живой и неживой природы.

Самыми распространенными элементами земной коры, на долю которых приходится 90% ее атомарного состава, являются: О, Si, Al и Na. Далее следуют Са, Fe, Mg, P и другие элементы.

В живых организмах обнаружено около 80 химических элементов. Но достоверно известно о функциях в организмах лишь в отношении 27 из них. В состав живых организмов входят атомы тех же элементов, что и в состав неживой природы, но их содержание иное.

По количественному содержанию в живом веществе элементы делятся на три группы.

Органогенные (биофильные) элементы – С, Н, N, О. На их долю приходится 98% элементарного состава всех живых организмов.

Макроэлементы – Na, К, Са, Cl, P, S, Fe, Mg. Их концентрация превышает 0,001%.

Микроэлементы – Zn, I, Cu, F, Мn, Мо, Со и многие другие. Их доля составляет менее 0,001%. Таким образом, элементарный состав живой и неживой природы одинаков, что свидетельствует об их материальном единстве. Провести четкую грань между живым и неживым на уровне атомов не представляется возможным.

2. Характеристика органогенных элементов

Почему органогенные элементы так удивительно подходят для выполнения биологических функций? Почему углерод, водород, азот и кислород стали удобными для «химии жизни»? Чтобы ответить на эти вопросы, необходимо вспомнить особенности строения и свойства атомов этих элементов:

1) атомы всех этих элементов способны образовывать ковалентные связи посредством спаривания электронов;

2) они легко могут образовывать разнообразные химические соединения, реагируя друг с другом (кислород, азот и углерод могут образовывать как одинарные, так и двойные связи; углерод способен к образованию С–С связей, а также легко вступать в ковалентные связи с кислородом, азотом и серой);

3) все они имеют малую атомную массу.

3. Молекулярный состав живого вещества

Большинство элементов, присутствующих в живой материи, образуют разнообразные химические соединения, которые подразделяются на неорганические и органические вещества. Органические соединения являются основой строения любого организма. Основой строения органических веществ служат атомы углерода. Приведем данные о содержании в клетке неорганических и органических веществ (табл. 2).

Таблица 2. Содержание неорганических и органических веществ в клетке

Неорганические вещества

Содержание, %

Органические вещества

Содержание, %

Вода
Минеральные вещества

70–80
1,0–1,5

Белки
Жиры
Углеводы
Нуклеиновые кислоты
АТФ и другие низкомолекулярные органические соединения

0,2–2,0
1,0–2,0
0,1–0,5
10–20

1–5

Таким образом, молекулярный состав живой и неживой природы различен, поэтому на молекулярном уровне можно провести между ними четкую границу.

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

IV. Домашнее задание

Изучить параграф учебника (элементарный и молекулярный состав живого вещества).

Урок 2–3. Неорганические вещества. Вода: связь между химическим строением и ролью в жизнедеятельности клетки и организма

Оборудование: таблицы по общей биологии.

I. Проверка знаний

Устная проверка знаний по вопросам

1. Элементарный состав неживой и живой природы.

2. Характеристика органогенных элементов.

3. Молекулярный состав живой материи.

II. Изучение нового материала

1. Типы связей между атомами, играющие важную роль в живых организмах

У большинства элементов (об этом вы знаете из курса химии) атомы нестабильны, т.к. последний их электронный слой заполнен не до конца. Атомы с незаполненными внешними электронными слоями способны вступать в химические реакции, образуя связи с другими атомами. Реакции сопровождаются перегруппировкой электронов, в результате которой внешняя электронная оболочка у каждого атома оказывается заполненной, и атом становится более стабильным.

В живых организмах важную роль играют три типа химических связей.

1. Ионная связь, которая образуется тогда, когда атом отдает другому атому один из нескольких электронов. (Приведите примеры из курса химии.)

2. Ковалентная связь, образующаяся при возникновении у двух атомов обобществленной пары электронов – по одному электрону от каждого атома. (Приведите примеры из курса химии.)

3. Водородная связь, в образовании которой участвует водородный атом, соединенный с каким-нибудь другим атомом ковалентной полярной связью (обычно с атомами кислорода или азота). В составе полярной молекулы водород несет частично положительный заряд. Этот заряд притягивается третьим атомом (как правило, кислорода или азота), несущим частично отрицательный заряд в составе другой полярной молекулы. Такое притяжение и называют водородной связью.

В сравнении с ионной или ковалентной связью одиночная водородная связь – слабая. Она легко рвется, но множество таких связей способно породить силу, на которой в прямом смысле и «держится» все живое. Смысл этой фразы вам станет окончательно ясен несколько позже.

2. Содержание воды в клетке

Вода – одно из самых распространенных веществ на Земле, она покрывает большую часть земной поверхности и входит в состав всех живых организмов.

Вода составляет почти 80% массы клетки (в головном мозге – 85%, в клетках развивающегося зародыша – 90%). Две трети массы человека составляет вода. Человек может прожить без воды не более 14 дней. Потеря организмом 20% воды может привести к смерти. Однако, не все клетки организмов содержат одинаковое количество воды. Так, в клетках эмали зубов воды около 10%, столь же немного ее в клетках покоящихся семян. В клетках молодого организма воды – около 80%, а в клетках старого – только 60%. Приведенные данные позволяют сделать вывод: чем больше воды в клетке, тем интенсивнее в ней идут обменные процессы.

3. Структура и свойства молекулы воды

Уникальные свойства воды объясняются структурой ее молекул и определяют ее биологические функции. Из курса химии известно, что формула молекулы воды Н2О. Она состоит из двух атомов водорода и одного атома кислорода и при этом электронейтральна. Но электрический заряд внутри молекулы распределен неравномерно: в области атомов водорода (точнее протонов) преобладает положительный заряд, в области, где расположен кислород, выше плотность отрицательного заряда. Следовательно, частица воды – диполь.

Вследствие того, что электронные облака атомов водорода в молекуле воды оттянуты к атому кислорода, ядра водородных атомов способны взаимодействовать с неподеленными парами электронов атомов кислорода соседних молекул воды, т.е. между молекулами воды образуются водородные связи. Каждая молекула воды имеет два атома водорода и две неподеленные пары электронов, значит она может образовывать водородные связи с четырьмя соседними молекулами воды.

Таким образом молекулы воды соединяются в удвоенные, утроенные и так далее ассоциированные молекулы (гидраты). В итоге, в жидком состоянии вода состоит из отдельных молекул и ассоциантов типа (Н2О)х. Способность молекул воды к образованию водородных связей друг с другом существенно влияет на физические свойства этого вещества. Большая теплоемкость, теплота плавления и теплота парообразования воды объясняются тем, что большая часть поглощаемого тепла расходуется на разрыв водородных связей между молекулами.

Вода обладает высокой теплопроводностью. Она практически не сжимается и прозрачна в видимом участке спектра. Наконец, вода – вещество, плотность которого в жидком состоянии больше, чем в твердом (при 4 °С вода имеет максимальную плотность, у льда плотность меньше, поэтому он поднимается на поверхность).

Физические и химические свойства делают воду уникальной жидкостью и определяют ее биологическое значение.

4. Биологическое значение воды

Роль воды к клетках и в организмах велика. Рассмотрим ее биологические функции, исходя из физических и химических свойств этого уникального вещества.

1. Вода способна к когезии, т.е. к сцеплению своих молекул под действием сил притяжения. Вода способна слипаться сама с собой и с другими веществами (можно, например, воду налить в стакан «с верхом» и она не прольется). Это возможно благодаря поверхностному натяжению воды, из-за которого ее поверхность как бы покрыта «кожицей». Эти физические особенности воды позволяют ей выполнять важную биологическую функцию – определение физических свойств клетки: ее объема и упругости (тургесцентностъ). У круглых червей вода полостной жидкости играет роль гидростатического скелета, выполняя опорную функцию.

Продолжение следует

 

Рейтинг@Mail.ru
Рейтинг@Mail.ru