ЧЕЛОВЕК И ЕГО ЗДОРОВЬЕ

В.Н. ПЛАТОВА

Терморегуляция и тепловой баланс

Выработка тепла (теплопродукция) и температура тела

Человек, как известно, относится к гомойотермным, или теплокровным, организмам. Означает ли это, что температура его тела постоянна, т.е. организм не реагирует на изменения температуры окружающей среды? Реагирует, и даже очень чутко. Постоянство температуры тела – это, собственно, и есть результат непрерывно происходящих в организме реакций, поддерживающих неизменным его тепловой баланс.

С точки зрения обменных процессов, выработка тепла – это побочный эффект химических реакций биологического окисления, в ходе которых поступающие в организм питательные вещества – жиры, белки, углеводы – претерпевают превращения, заканчивающиеся образованием воды и углекислого газа. Такие же реакции с высвобождением тепловой энергии происходят и в организмах пойкилотермных, или холоднокровных, животных, но из-за значительно более низкой их интенсивности температура тела у пойкилотермных лишь незначительно превышает температуру окружающей среды и изменяется в соответствии с последней.

Все протекающие в живом организме химические реакции зависят от температуры. И у пойкилотермных животных интенсивность процессов превращения энергии, согласно правилу Вант-Гоффа*, возрастает пропорционально внешней температуре. У гомойотермных животных эта зависимость замаскирована другими эффектами. Если гомойотермный организм охладить ниже комфортной температуры окружающей среды, интенсивность обменных процессов и, следовательно, выработка тепла у него возрастают, предотвращая понижение температуры тела. Если терморегуляцию у этих животных блокировать (например, при наркозе или повреждении определенных участков ЦНС), кривая зависимости теплопродукции от температуры будет такой же, как и для пойкилотермных организмов. Но даже в этом случае сохраняются существенные количественные различия между обменными процессами у пойкилотермных и гомойотермных животных: при данной температуре тела интенсивность обмена энергии в расчете на единицу массы тела у гомойотермных организмов по меньшей мере в 3 раза превышает интенсивность обмена у пойкилотермных организмов.

Многие животные, из тех, что не относятся к млекопитающим и птицам, способны в некоторой степени менять температуру тела при помощи «поведенческой терморегуляции» (например, рыбы могут заплывать в более теплую воду, ящерицы и змеи – принимать «солнечные ванны»). Истинно гомойотермные организмы способны использовать как поведенческие, так и автономные способы терморегуляции, в частности у них может при необходимости вырабатываться дополнительное тепло за счет активации обмена веществ, тогда как другие организмы вынуждены ориентироваться на внешние источники тепла.

Теплопродукция и размеры тела

Температура большинства теплокровных млекопитающих лежит в диапазоне от 36 до 40 °С, несмотря на значительные различия в размерах тела. В то же время интенсивность метаболизма (М) зависит от массы тела (m) как ее показательная функция: M = k x m0,75, т.е. величина М/m0,75 одна и та же для мыши и для слона, хотя у мыши интенсивность метаболизма на 1 кг массы тела значительно больше, чем у слона. Этот так называемый закон снижения интенсивности обмена веществ в зависимости от массы тела отражает то, что теплопродукция соответствует интенсивности теплоотдачи в окружающее пространство. Для данной разницы температур между внутренней средой организма и окружающей средой потери тепла на единицу массы тела оказываются тем больше, чем больше соотношение между поверхностью и объемом тела, причем последнее соотношение уменьшается с увеличением размеров тела.

Температура тела и тепловой баланс

Когда для поддержания постоянства температуры тела требуется дополнительное тепло, оно может быть выработано за счет:

1) произвольной двигательной активности;
2) непроизвольной ритмической мышечной активности (дрожь, вызванная холодом);
3) ускорения обменных процессов, не связанных с сокращением мышц.

У взрослого человека дрожь – наиболее важный непроизвольный механизм термогенеза. «Недрожательный термогенез» встречается у новорожденных животных и детей, а также у мелких, адаптированных к холоду животных и у животных, впадающих в зимнюю спячку. Главным источником «недрожательного термогенеза» служит так называемый бурый жир – ткань, характеризующаяся избытком митохондрий и «мультилакулярным» распределением жира (многочисленные мелкие капельки жира, окруженные митохондриями). Эта ткань обнаруживается между лопатками, в подмышечных впадинах и в некоторых других местах.

Чтобы температура тела не изменялась, теплопродукция должна равняться теплоотдаче. По закону охлаждения Ньютона отданное телом тепло (за вычетом потерь, связанных с испарением) пропорционально разности температур между внутренней частью тела и окружающим пространством. У человека теплоотдача равна нулю при температуре окружающей среды 37 °С, а при понижении температуры она возрастает. Теплоотдача зависит также от проведения тепла внутри организма и периферического кровотока.

Термогенез, связанный с обменом веществ в условиях покоя (рис. 1), уравновешивается процессами теплоотдачи в зоне температур окружающей среды Т2–Т3, если кожный кровоток постепенно уменьшается по мере снижения температуры от Т3 до Т2. При температуре ниже Т2 постоянство температуры тела может поддерживаться только при усилении термогенеза пропорционально потерям тепла. Наибольшая выработка тепла, обеспечиваемая этими механизмами, у человека соответствует уровню метаболизма, в 3–5 раз превышающему интенсивность основного обмена, и характеризует нижнюю границу диапазона терморегуляции T1. В случае выхода за эту границу развивается гипотермия, которая может привести к смерти от переохлаждения.

При температуре окружающей среды выше Т3 температурное равновесие могло бы сохраняться за счет ослабления интенсивности обменных процессов. На самом деле, температурный баланс устанавливается за счет дополнительного механизма теплоотдачи – испарения выделяющегося пота. Температура Т4 соответствует верхней границе диапазона терморегуляции, которая определяется максимальной интенсивностью выделения пота. При температуре среды выше Т4 возникает гипертермия, которая может привести к смерти от перегрева. Температурный диапазон Т2–Т3, в пределах которого температура организма может поддерживаться на постоянном уровне без участия дополнительных механизмов теплопродукции или потоотделения, называется термонейтральной зоной. В этом диапазоне интенсивность метаболизма и теплопродукция по определению минимальны.

Температура тела человека

Тепло, вырабатываемое организмом в норме (т.е. в условиях равновесия), отдается в окружающее пространство поверхностью тела, поэтому температура частей тела вблизи его поверхности должна быть ниже температуры его центральных частей. В связи с неправильностью геометрических форм тела распределение температуры в нем описывается сложной функцией. Например, когда легко одетый взрослый человек находится в помещении с температурой воздуха 20 °С, температура глубокой мышечной части бедра составляет 35 °С, глубоких слоев икроножной мышцы 33 °С, в центре стопы температура составляет лишь 27–28 °С, а ректальная температура равна примерно 37 °С. Колебания температуры тела, вызванные изменениями внешней температуры, наиболее выражены вблизи поверхности тела и на концах конечностей (рис. 2).

Рис. 2. Температура различных областей тела человека в условиях холода (А) и тепла (Б)

Внутренняя температура тела сама по себе не является постоянной ни в пространственном, ни во временном отношении. В термонейтральных условиях различия температур во внутренних областях тела составляют 0,2–1,2 °С; даже в головном мозге разница температур между центральной и наружной частями достигает более 1 °С. Наиболее высокая температура отмечается в прямой кишке, а не в печени, как считалось раньше. На практике обычно представляют интерес изменения температуры во времени, поэтому ее измеряют на каком-либо одном определенном участке.

Для клинических целей предпочтительнее измерять ректальную температуру (термометр вводят через анальное отверстие в прямую кишку на стандартную глубину 10–15 см). Оральная, точнее подъязычная, температура обычно на 0,2–0,5 °С ниже ректальной. На нее влияет температура вдыхаемого воздуха, пищи и питья.

При исследованиях в спортивной медицине часто измеряют пищеводную температуру (над входом в желудок), которую регистрируют с помощью гибких термодатчиков. Такие измерения отражают изменения температуры тела быстрее, чем регистрация ректальной температуры.

Подмышечная температура также может служить показателем внутренней температуры тела, поскольку, когда рука плотно прижата к грудной клетке, температурные градиенты смещаются так, что граница внутреннего слоя доходит до подмышечной впадины. Однако для этого необходимо некоторое время. Особенно после нахождения на холоде, когда поверхностные ткани были охлаждены и в них произошло сужение сосудов (это особенно часто бывает при простуде). В этом случае для установления теплового равновесия в этих тканях должно пройти около получаса.

В некоторых случаях внутреннюю температуру измеряют в наружном слуховом проходе. Это делают при помощи гибкого датчика, который помещают вблизи барабанной перепонки и предохраняют от внешних температурных влияний при помощи ватного тампона.

Обычно для определения температуры поверхностного слоя тела измеряют температуру кожи. В этом случае измерение в одной точке дает неадекватный результат. Поэтому на практике обычно измеряют среднюю температуру кожи в области лба, груди, живота, плеча, предплечья, тыльной стороны ладони, бедра, голени и дорсальной поверхности стопы. При вычислениях учитывают площадь соответствующей поверхности тела. Найденная таким способом «средняя температура кожи» при комфортной температуре окружающей среды составляет примерно 33–34 °С.

Периодические колебания средней температуры

Температура тела человека колеблется в течение дня: она минимальна в предутренние часы и максимальна (часто с двумя пиками) в дневное время (рис. 3). Амплитуда суточных колебаний составляет примерно 1 °С. У животных, активных в ночное время, температурный максимум отмечается ночью. Проще всего было бы объяснить эти факты тем, что увеличение температуры происходит в результате усиления физической активности, однако такое объяснение оказывается неверным.

Колебания температуры – один из многих суточных ритмов. Даже если исключить все ориентирующие внешние сигналы (свет, температурные изменения, часы приема пищи), температура тела

продолжает колебаться ритмически, но период колебаний в этом случае составляет от 24 до 25 ч. Таким образом, суточные колебания температуры тела основаны на эндогенном ритме («биологические часы»), обычно синхронизованном с внешними сигналами, в частности с вращением Земли. Во время путешествий, связанных с пересечением земных меридианов, обычно требуется 1–2 недели для того, чтобы температурный ритм пришел в соответствие с жизненным укладом, определяемым новым для организма местным временем.

На ритм суточных изменений температуры накладываются ритмы с более продолжительными периодами, например температурный ритм, синхронизованный с менструальным циклом.

Изменение температуры при физической нагрузке

Во время ходьбы, например, выработка тепла в 3–4 раза, а при напряженной физической работе даже в 7–10 раз выше, чем в состоянии покоя. Увеличивается она и в первые часы после приема пищи (примерно на 10–20%). Ректальная температура во время марафонского бега может достигать 39–40 °С, а в некоторых случаях – почти 41 °С. А вот средняя температура кожи снижается за счет вызванного нагрузкой потоотделения и испарения. Во время работы с субмаксимальной нагрузкой, пока происходит выделение пота, повышение внутренней температуры почти не зависит от окружающей температуры в диапазоне 15–35 °С. Обезвоживание тела приводит к подъему внутренней температуры и заметно снижает работоспособность.

Теплоотдача

Как же тепло, возникшее в недрах организма, покидает его? Частично с выделениями и с выдыхаемым воздухом, но роль главного охладителя играет кровь. Благодаря своей высокой теплоемкости кровь очень хорошо подходит для этой цели. Она забирает тепло у клеток омываемых ею тканей и органов и уносит его по кровеносным сосудам к коже и слизистым оболочкам. Здесь, в основном, и происходит отдача тепла. Поэтому оттекающая от кожи кровь примерно на 3 °С холоднее притекающей. Если организм лишить возможности удалять тепло, то всего лишь за 2 ч температура его повышается на 4 °С, а подъем температуры до 43–44 °С уже, как правило, несовместим с жизнью.

Передача тепла в конечностях до некоторой степени определяется тем, что кровоток здесь происходит по принципу противотока. Глубокие крупные сосуды конечностей располагаются параллельно, благодаря чему кровь, следующая по артериям на периферию, отдает свое тепло близлежащим венам. Таким образом, капилляры, расположенные на концах конечностей, получают предварительно охлажденную кровь, поэтому пальцы рук и ног наиболее чувствительны к пониженным температурам.

Слагаемыми теплоотдачи служат: проведение тепла Нп, конвекция Нк, излучение Низл и испарение Нисп. Общий поток тепла определяется суммой этих компонентов:

Ннар = Нп + Нк + Низл + Нисп.

Перенос тепла путем проведения происходит, когда тело соприкасается (в положении стоя, сидя или лежа) с плотным субстратом. Величина потока тепла определяется температурой и теплопроводностью прилежащего субстрата.

Если кожа теплее окружающего воздуха, прилегающий к ней слой воздуха нагревается, поднимается и замещается более холодным и плотным воздухом. Движущей силой этого конвективного потока служит разница между температурами тела и окружающей среды вблизи него. Чем больше движений возникает во внешнем воздухе, тем тоньше становится пограничный слой (максимальная толщина 8 мм).

Для диапазона биологических температур перенос тепла за счет излучения Низл может быть описан с достаточной точностью при помощи уравнения:

Низл = hизл x (Tкожи – Тизл) x А,

где Tкожи – средняя температура кожи, Тизл – средняя температура излучения (температура окружающих поверхностей, например стен комнаты),
А – эффективная площадь поверхности тела и
hизл – коэффициент переноса тепла за счет излучения.
Коэффициент hизл учитывает излучающую способность кожи, которая для длинноволнового ИК-излучения равна примерно 1 независимо от пигментации, т.е. кожа излучает почти столько же энергии, сколько абсолютно черное тело.

Около 20% теплоотдачи тела человека в условиях нейтральной температуры осуществляется за счет испарения воды с поверхности кожи или со слизистых оболочек дыхательных путей. Теплоотдача путем испарения происходит даже при 100% относительной влажности окружающего воздуха. Это происходит до тех пор, пока температура кожи выше температуры окружающей среды и кожа полностью увлажнена благодаря достаточному выделению пота.

Когда температура окружающей среды превышает температуру тела, теплоотдача может осуществляться только путем испарения. Эффективность охлаждения за счет потоотделения очень высока: при испарении 1 л воды организм человека может отдать треть всего тепла, выработанного в условиях покоя за целый день.

Влияние одежды

Эффективность одежды как теплоизолятора обусловлена мельчайшими объемами воздуха в структуре плетеной ткани или в ворсе, в которых не возникают сколько-нибудь заметные конвективные потоки. В этом случае тепло переносится только путем проведения, а воздух является плохим проводником тепла.

Факторы окружающей среды и температурный комфорт

Влияние окружения на тепловой режим организма человека определяется по крайней мере четырьмя физическими факторами: температурой воздуха, влажностью, температурой излучения и скоростью движения воздуха (ветра). От этих факторов зависит, ощущает ли испытуемый «температурный комфорт», жарко ему либо холодно. Условие комфорта состоит в том, чтобы организм не нуждался в работе механизмов терморегуляции, т.е. ему не требовалось бы ни дрожи, ни выделения пота, а кровоток в периферических органах мог сохранять промежуточную скорость. Это условие соответствует упомянутой выше термонейтральной зоне.

Указанные четыре физических фактора до некоторой степени взаимозаменяемы в отношении ощущения комфорта и потребности в терморегуляции. Иными словами, ощущение холода, вызванное низкой температурой воздуха, может быть ослаблено соответствующим повышением температуры излучения. Если атмосфера кажется душной, то соответствующее ощущение может быть ослаблено путем снижения влажности или температуры воздуха. Если температура излучения низкая (холодные стены), для достижения комфорта требуется увеличение температуры воздуха.

Согласно проведенным недавно исследованиям, значение комфортной температуры для легко одетого (рубашка, трусы, длинные хлопковые брюки) сидящего испытуемого равно примерно 25–26 °С при влажности воздуха 50% и равенстве температур воздуха и стен. Соответствующее значение для обнаженного испытуемого составляет 28 °С. При этом средняя температура кожи равна примерно 34 °С. При физической, работе по мере того как испытуемый затрачивает все больше физических усилий, комфортная температура снижается. Например, для легкой кабинетной работы предпочтительная температура воздуха равна примерно 22 °С. Как ни странно, во время тяжелой физической работы комнатная температура, при которой не возникает потоотделения, ощущается как слишком низкая.

Диаграмма на рис. 4 показывает, как соотносятся значения комфортной температуры, влажности и температуры окружающего воздуха во время легкой физической работы. Каждой степени дискомфорта может быть сопоставлено одно значение температуры – эффективная температура (ЭТ). Численное значение ЭТ находят путем проецирования на ось X точки, в которой линия дискомфорта пересекает кривую, соответствующую 50% относительной влажности. Например, все комбинации значений температуры и влажности в темно-серой области (30 °С при относительной влажности 100% или 45 °С при относительной влажности 20% и т.д.) соответствуют эффективной температуре 37 °С, которая в свою очередь соответствует определенной степени дискомфорта. В диапазоне более низких температур влияние влажности оказывается меньшим (наклон линий дискомфорта более крутой), поскольку в этом случае вклад испарения в общую теплоотдачу незначителен. Дискомфорт возрастает с увеличением средней температуры и влажности кожи. Когда значения параметров, определяющие максимальную влажность кожи (100%), превышены, тепловой баланс не может больше сохраняться. Таким образом, человек способен выдерживать условия за пределами этой границы лишь в течение короткого времени; пот при этом стекает ручьями, поскольку его выделяется больше, чем может испариться. Линии дискомфорта, конечно, смещаются в зависимости от тепловой изоляции, обеспечиваемой одеждой, скорости ветра и характера физической нагрузки.

Значения комфортной температуры в воде

Вода обладает по сравнению с воздухом значительно большей теплопроводностью и теплоемкостью. Когда вода находится в движении, возникающий турбулентный поток вблизи поверхности тела отнимает тепло так быстро, что при температуре воды 10 °С даже сильное физическое напряжение не позволяет поддерживать тепловое равновесие, и возникает гипотермия. Если тело находится в полном покое, для достижения температурного комфорта температура воды должна быть 35–36 °С. В зависимости от толщины изолирующей жировой ткани нижняя предельная комфортная температура в воде колеблется от 31 до 36 °С.

Продолжение следует


* Согласно правилу Вант-Гоффа, при изменении температуры на 10 °С (в пределах от 20 до 40 °С) потребление тканями кислорода изменяется в том же направлении в 2–3 раза.

 

Рейтинг@Mail.ru
Рейтинг@Mail.ru